SZTE Info

Kiemelt_ELI_Krausz_MG_6509

Forradalmasítja a kutatást az ELI-ALPS, az attoszekundumos fényimpulzus forrás

A rendkívül gyors kémiai, biológiai és fizikai folyamatok megfigyelésére ad lehetőséget az ELI-ALPS, az attoszekundumos fényimpulzus forrás. A szegedi egyetemhez is ezernyi szállal kapcsolódó kutatóközpont épületének átadó ünnepségén a speciális fény, a lézer alkalmazásának lehetőségeit, köztük a tumoros betegségek korai felismerésére és kezelésére esélyt adó innovatív módszerekhez vezető utat is bemutatta Krausz Ferenc fizikus, a Max Planck Kvantumoptikai Intézet igazgatója.

Cikk nyomtatásCikk nyomtatás
Link küldésLink küldés

A fény a legfontosabb munkaeszköze az ELI-ALPS kutatóközpontnak – indította előadását Krausz Ferenc. A garchingi Max Planck Kvantumoptikai Intézet Nemzetközi hírű igazgatója látványos tudománynépszerűsítő bemutatóval igazolta az ELI (Extreme Light Infrastructure) magyar pillére, az ELI-ALPS épületét átadó 2017. május 23-i ünnepségen a kutatóintézetben elvégezhető kísérleteknek a jelentőségét. A fény ezernyi arcát felvillantva több példát is hozott arra, miért érdemes az extrém fény alkalmazása számára az ELI-ALPS kutatóközpont épületét jellemző rendkívüli adottságú és költségű infrastruktúrát létrehozni és működtetni.


_MG_4584

 

A napfény „szolgálatai”

 

A Nap éltető ereje nélkül nem lehetne élet a Földön. A napfény halmozta fel a Föld belsejében raktározott energiákat. Az ezek felhasználásával keletkező káros anyagok lebontásában és hasznosításához is napfény használható. Sőt: a napenergia megfelelő módszerű összegyűjtésével az emberiség a teljes energiaszükségletét is képes lenne biztosítani – tudják a kutatók.


_MG_4277

A lézer, e speciális fény ezernyi felhasználási módja közül többet is kiemelt előadásában Krausz Ferenc. Egyik példáját a világűrből vette, mikor érzékeltette: a lézerfény akár az egymástól 5 millió kilométer távolságban elhelyezkedő 3 űrszondát is képes rögzíteni. A másik példáját a mikrokozmoszból emelte ki: az eddig emberi szem számára láthatatlant, így például az elektronok mozgását is képesek lesznek megmutatni az ELI-ALPS kutatóközpont berendezései.

 

Mint a Nap körül a bolygók, úgy keringenek az atommag körül az elektronok – idézte föl a közismert ismeretterjesztő rajzot Krausz Ferenc. – Ez az elektronok valószínűsített mozgásának az ábrázolása, a kvantummechanika megszületése óta – tette hozzá gyorsan. – Az elektronok mozgását ugyanis a fizikusok nem tudják meghatározni. A valósághoz közelebb áll az az elképzelés, mely szerint az elektronok felhőként mozognak az atommag körül. Ahol sűrűbb a felhő, ott több elektron lehet, mint a ritkább „felsőrétegekben”. Az elektronok szinte állandó mozgásban vannak, ami abban nyilvánul meg, hogy e „felhő” folyamatosan változtatja az alakját, a sűrűségét, a helyzetét és a súlypontját, azaz újból és újból „deformálódik” – tette képszerűvé az atommal kapcsolatos elképzelést a Németországban élő fizikus.

 

 

Az elektron rezgésének következményei

 

Az elektronok rezgése, mikroszkopikus mozgása felelős a fény kibocsátásáért éppúgy, mint az elnyeléséért és az ebből következő észlelésért – hangsúlyozta Krausz professzor, amikor a lámpán belüli izzószál és a szemünkön belüli rodopszin molekula szerepét mutatta be. – Ám az elektronok mozgása nemcsak létfontosságú folyamatok elindítója, hanem veszélyforrás is lehet. Például: a sejtmagon belüli DNS-molekulában külső – mondjuk a bőrünket érő, a napfényből származó részecske – hatásra a kémiai kötések felszakadnak. Az elektronoknak ez a káros mozgása olyan mutációk kialakulásához vezethet, aminek rákos daganat lehet a következménye.


_MG_4530

 

Az elektronok mikroszkopikus mozgásának jobb megértése milyen következményekkel járhat? Egyrészt súlyos betegségek okait a legalapvetőbb molekuláris szinten is megérthetik a kutatók, másrészt a mindennapokban használt elektromos eszközök működésének a hatékonyságát a sokszorosára növelhetjük – válaszolt Krausz Ferenc, majd hozzátette: a kihívás rendkívüli, ugyanis az elektronok mozgása rendkívül gyors: attoszekundumban mérendő.

 

 

Az attoszekundumos fizika lehetőségei

 

Az ultragyors kémiai, biológiai és fizikai folyamatok megfigyelését teszik majd lehetővé az ELI-ALPS berendezései – olvasható a kutatóközpontot bemutató, az attoszekundumos fizikát népszerűsítő kiadványokban is:


hatteranyag_ELI-ALPS


Mekkora az attoszekundum? A 10-18 másodperc, azaz az attosecundum rövidségét számsorokkal és ábrákkal is érzékeltettette előadásában a kutató. Például a fény terjedésének másodpercenként 300 ezer kilométeres sebességét úgy, hogy jellemezte, hogy ez a Föld és a Hold közötti távolság, azaz egy Földről induló fényforrás 1 másodperc alatt érne a Holdra. – Most képzeljük el, hogy ugyanez a rendkívüli gyorsaságú fény a 0,3 nanométer nagyságú vízmolekula egyik szélétől a másikig mennyire rövid idő alatt jut el – javasolta, majd összegzett: – Tehát az 1 attosecundum úgy viszonyul az 1 másodperchez, mint a vízmolekula mérete a Föld és a Hold közötti távolsághoz.


_MG_4542


Hogyan lehetséges rendkívüli rövidségű ideig lejátszódó folyamatokat láthatóvá tenni? – tette föl az újabb kérdést Krausz Ferenc. Válaszának első részében a gyorsan mozgó objektumok, például egy puskagolyó útjának és becsapódása fényképezésének módszerét ecsetelte. A rövid – néhány mikroszekundumos – expozíciós idővel készült felvételek egymás után illesztéséből és lassított lejátszásából lesz láthatóvá. Ám a Krausz Ferenc és kutatótársai által vizsgálat alá vetett objektum esetében az atomokon belüli elektronok mozgása gyorsabb a jelenleg rendelkezésre álló kamerák expozíciós idejénél. – Az ultrarövid fényimpulzusok jelentik a kulcsot: attoszekundumos expozíciós idővel kell fotózni a leggyorsabb objektumok, az elektronok mozgását – adták fel maguknak a leckét a fizikusok.

 

Miként lehet létrehozni attoszekundumos impulzusokat? A kérdésre a lézerek fejlődéstörténetének vázlatával adható meg a hosszabb válasz. Ennek rövidített változata szerint az attoszekundumos impulzusokhoz vezető első lépés az volt, amikor a kutatók lézerberendezésüket képessé tették a különböző színű, azaz különböző hosszúságú fényhullámok szinkronizálására, azaz e fényhullámok csúcsainak az összehangolására, majd „összeadására”. Ezt sikerült a fizikusoknak előállítaniuk a látható fény tartományában, így készülnek a femtoszekundumos lézerek, amelyeket például a szemműtétekhez vagy a bőrgyógyászatban is használnak. Az ennél rövidebb impulzusú lézerek előállításához az ultraibolya sugárzás, vagyis a látható fénynél kisebb hullámhosszú tartományban az első sikert 2001-ben könyvelhették el a kutatók. A módszert 2008-ra sikerült annyira továbbfejleszteni, hogy a 100 attoszekundumnál rövidebb „expozíciós idővel” megvilágíthatóak és „fotózhatóak”, így láthatóvá tehetőek a szilárd testek molekuláiban lejátszódó elektronikus folyamatok.

 

 

A fény elektromos tere

 

– A fény és anyag kölcsönhatásának legszebb példája az elektron atomkötelékéből való kiszakítása – húzta alá a fizikus. A lézerfénynek ezt az erejét az előadáshoz illesztett animáció tette elképzelhetővé a résztvevők számára. – A fizikai alapvető kérdése, hogy ez a folyamat és következményei miként játszódnak le. – Egy rövid és több ciklusból álló lézerimpulzus megteremti annak előfeltételét, hogy az elektronok atomból való kilépése rendkívül rövid időre, egyetlen fényhullámhosszra korlátozódjon. E kísérletet ellenőrizni úgy lehet, hogy az ionizáció mozgásba hozásával párhuzamosan attoszekundumos impulzusokkal lefényképezzük az elektronok pillanatnyi állapotát, így visszakövethetjük, miként játszódott le a folyamat – magyarázta a fizikus, mikor megmutatta, hogy a lézerfény elektronikus terében mikor a legaktívabb az „ion termelés”, azaz az elektromos töltéssel rendelkező atomok mennyisége. Arra is választ kaptak a kutatók, hogy mi történik az ionokkal. Megállapították: az atommagban az elektronok kiszakításával keletkezett „üreg” lüktet a két kvantumállapot között – láttuk a Nature folyóirat alábbi címlapját. Krausz Ferenc a Nature folyóiratban publikált cikkében írta le az e felvételekkel elért időlassítást, ami egymillárdszor nagyobb, mint makroszkopikus filmezéshez és visszajátszáshoz, például a puskagolyó becsapódásának a megmutatásához szükséges időlassítás.

 

Az atom belsejéről az első fényképet készítő Krausz Ferenc a lézer elektoron-terét is láthatóvá tette. Honnan tudjuk, hogy a fény elektromos tere szinte ugyanolyan gyorsan változik, mint ahogy az elektron mozog? Onnan, hogy a fény is az elektronok mozgásából „születik” – válaszolt a kérdésére a fizikus. Azt is megmutatta, hogy a fény elektromos terének a változását hogyan mérik.


_MG_6535

Miért izgalmas mindez? A számos lehetséges válasz közül Krausz Ferenc azt mutatta meg, hogy a rák, mint a minden negyedik ember halálát okozó betegség előrejelzésében, illetve a páciensek gyógyítására alkalmazott terápiák hatékonyságának a növelésében mi a szerepe a lézernek, illetve az attoszekundumos fényimpulzus forrást a kutatás szolgálatába állító ELI-ALPS-nak.

 

 

Ha megmozdul egy elektron a test egyetlen molekulájában…

 

Mikroszkopikus folyamatokkal kezdődik a betegség: ha megmozdul egy elektron egy molekulában, megváltozik a molekula formája, alakja, funkciója is. Így aztán ez a molekula már nem úgy működik a testben, ahogy kellene. Ahhoz, hogy a rák különböző fajtáinak a gyógyítására megfelelő terápiákat fejleszthessenek ki a kutatók, a mikroszkopikus folyamatokat minél jobban meg kell érteniük.

 

A rákos daganat kialakulása legelső stádiumában hajszálerek szövik át a burjánzásnak indult sejtet annak érdekében, hogy tápanyagot kapjon és így növekedésnek indulhasson, és végül olyan mértékben megnövekedjen vagy szétszóródjon, ami halált okoz. Ha e stádiumban képesek lennének kimutatni a betegséget, akkor nagyságrendekkel korábban felismerhető lenne, így a megelőzés vagy a terápia is hatékonyabbá válhatna – vélekedett Krausz Ferenc.


_MG_4565

Hogyan lehetséges a lézertechnikát és az attoszekundumos fizikát alkalmazni a rák elleni küzdelemben? Krausz Ferenc szerint akár egyetlen csepp vérből is kimutatható lesz annak az első molekulának a jelenléte, amely kizárólag a rákos sejtekben képződik, illetve azoknak a molekuláknak a jelenléte, amelyek az egészséges sejteknél nagyobb számban fordulnak elő a rákos daganatokban. Mindkét fajta molekula használható biomarkerként a rákos megbetegedés diagnosztizálására.

 

A kis számú molekula mérési technikáját nyújtja a Krausz Ferenc által bemutatott, az infravörös fényhez kötődő módszer. Ezzel az ujjlenyomathoz hasonlóan egyedi információ szerezhető a vizsgált molekuláról. Tehát a vérnek a betegség következtében megváltozott molekuláris összetételét mérni tudjuk a rák jelentkezésének olyan kezdeti stádiumában, amelyre eddig nem volt lehetőség. Ha ez sikerült, a módszer kiválóan alkalmas lesz rákszűrésre.

 

A következő lépés, hogy a vizsgálat pozitív eredménye esetén a testet nagy intenzitású lézerrel átvilágítva megállapítható az elsődleges daganat mérete azért, hogy a lézerrel előállított ionnyalábbal megsemmisíthessék még azt megelőzően, hogy a testben szétszóródna. Mert a tumoros betegségek gyógyításában használatos kiegészítő terápiák hatékonyságának a megállapítására is alkalmas ez az infravörös fénnyel kapcsolatos mérési módszer. Az elmélet igazolására szolgáló, a módszer 95 százalékos megbízhatóságát mutató adatokat ismertetve zárta előadást Krausz Ferenc.

 

A módszer finomításához és a jobb terápiához mélyebben meg kell értenünk a betegségeket előidéző komplex folyamatokat. Ehhez a releváns, komplex, molekuláris folyamatok valós idejű megfigyelésén keresztül vezet az út – húzta alá az előadó. – Ahhoz, hogy komplex biológiai rendszerekben az elektroneloszlás mozgását, időbeli változását meg tudjuk figyelni, attoszekundumos röntgenimpulzusokra van szükség. Ezzel – a világon elsőként – láthatóvá kell tenni azokat a komplex mozgásokat, amelyek jobb megértése elvezet a rákos megbetegedések sokkal hatékonyabb terápiájának a kifejlesztéséhez. Ez az eljárás forradalmasítja a gyógyítást. Ennek a forradalomnak az alapjait teremti meg az ELI-ALPS kutatóközpont.

 

 

Az ELI-ALPS elsőségei

 

„Minél alapvetőbb egy felfedezés, annál távolabb esik a gyakorlati felhasználástól, annál kevésbé függ össze a mindennapi problémákkal. Mégis ezek a nagy alapvető felfedezések viszik előre az emberiséget” – idézte Szent-Györgyi Albert szavait Krausz Ferenc, mikor bemutatta: e felfedezések miként motiválják a világ különböző pontjain azt a több mint 50 intézetet, ahol alkalmazzák az attoszekundumos lézert és mérést.


_MG_4531

 

– Az ELI-ALPS azonban nem egy a sok közül, nem egyszerűen modern laboratórium. Az ELI-ALPS európai összefogásnak, a magyar kormány támogatásának köszönhetően elsőként teremti meg annak esélyét, hogy azokat a mikroszkopikus folyamatokat megfigyelhessék, amelyek a súlyos betegségek gyógyításának az előfeltételei, mert valós időben és a kutatók szemével láthatóvá válnak – emelte ki a szegedi attoszekundumos fényimpulzus forrás, az ELI-ALPS elkészültének jelentőségét Krausz Ferenc, akinek előadását nagy érdeklődés kísérte. A programon részt vett – többek között – az atomfizikus Pálinkás József, az MTA korábbi elnöke, a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal elnöke; illetve a biofizikus Ormos Pál akadémikus, az MTA Szegedi Biológiai Kutatóközpont főigazgatója; továbbá az SZTE lézerfizikus rektora, Szabó Gábor akadémikus, valamint a szegedi egyetem több jeles kutatója is.


_MG_4523


„A szellemvilágban nincsenek nagy országok és kis országok, ott nincsenek országhatárok. Minden ország akkora, amennyivel hozzájárul az emberi haladáshoz, teljesen függetlenül attól, hogy a térképen mekkora terület jelöli a helyét a világban” – idézte a szegedi egyetem Nobel-díjas egykori rektora, Szent-Györgyi Albert véleményét Krausz Ferenc. Mondandója zárásaként aláhúzta: – Összefogással tegyünk meg mindent azért, hogy az ELI-ALPS segítségével Magyarországot és Európát nagyobbá tudjuk tenni ezen a térképen!

 

SZTEinfo – Újszászi Ilona

Fotók: Bobkó Anna


Az ELI-ALPS kutatóközpont avató ünnepségéről írtuk: Elkészült a szegedi lézerközpont épületkomplexuma


Korábban írtuk: Hamarosan elkészül az ELI-ALPS öt lézerre váró kutatóközpontjának épületegyüttese

Cikk nyomtatásCikk nyomtatás
Link küldésLink küldés

SZTEmagazin

2017. október 03.

Kiemelt_Antalicz_B

Első díjat nyert az Országos Tudományos Diákköri Konferencián, és egyedül épített a lézernyaláb tulajdonságait mérő szenzort. Felsőfokon beszél németül, angolul olvas szakcikkeket, miközben kínaiul tanul. A kollégiumában segíti az önképzőkör munkáját, s emellett egy új kutatási projekthez számítógépes szoftvert ír. Ő Antalicz Balázs, a Szegedi Tudományegyetem MSc-képzéses fizika szakos hallgatója, akitől leckét kaptunk lendületből és szakmai elhivatottságból.

SZTEtelevízió

2017. szeptember 13.

kiemelt_tanevnyito2017

Olyan jelentős fejlesztések előtt áll az SZTE, amelyekkel nemzetközi rangú kutatóegyetemmé válik – jelentette ki a rektor, igazolta példákkal a kormányt képviselő igazságügyi miniszter. A Szegedi Tudományegyetem 2017-2018-as tanévet nyitó ünnepségéről készült rövid videó itt megtekinthető.

Eseménynaptár

Eseménynaptár RSS

Rendezvénynaptár *

  • *
    november 11. 12:00 - december 10. 19:00
    Nyilvánosan eddig még be nem mutatott Szent-Györgyi relikviákat is láthat a közönség az SZTE Rektori Épületben rendezett emlékkiállításon, amely hétköznapokon 9-19 óra között látogatható. A „80 éves szegedi Nobel-díj” és az SZTE világhíres kutatója előtt tisztelgő tárlat az SZTE és a Szeged – Szent-Györgyi Albert Rotary Club közös projektje. További Információ: http://www.u-szeged.hu/sztehirek/2017-november/szent-gyorgyi-albert?objectParentFolderId=19396
  • november 18. 18:00 - december 3. 18:00
  • november 25.
    09:00 - 12:20
    A XXIV. Szent-Györgyi Napok programja az SZTE SZAKK-ETSZK rendezvénye. Köszöntőt mond Balogh Dénes (SZTE SZAKK). Előadás témák és előadók: Multiprofesszionális team szerepe a kardiológiai rehabilitációban - Bánfi Andrea (SZTE ETSZK ápoló hallgató); Újdonságok az elektrofiziológiai labor életében - Egervári Mária, Havasiné Magyar Ildikó, Schuck Nikolett, Rozgonyi Orsolya, Bajusz Éva, Szőkéné Szakáll Zita, Dr. Sághy László, Dr. Makai Attila, Prof. Dr. Forster Tamás (SZTE SZAKK II. Belgyógyászati Klinika és Kardiológiai Központ); A korai mobilizáció hatása a lélegeztetett betegekre - Őze Erzsébet (SZTE SZAKK Aneszteziológiai és Intenzív Terápiás Intéze); Intubálás nélküli videothoracoscopos tüdőműtétek - Igaz Márta (SZTE SZAKK Aneszteziológiai és Intenzív Terápiás Intézet); Felmaródás vagy nyomási fekély? - Kószó Lilla (SZTE ETSZK ápoló hallgató); Infekciókontroll a filmvásznon - Szél Borbála (SZTE SZAKK Kórházhigiénés Osztály); Ápolói tanácsadás napjainkban, avagy Gondolatok a hozzátartozók ápolásban való részvételéről - Blanárné Terjéki Ilona (Jász-Nagykun-Szolnok Megyei Hetényi Géza KórházRendelőintézet); Megszokott környezetben, nagyobb biztonságban? - Boros Edit, Dr. Balogh Zoltán (SZTE ETSZK Ápolási Tanszék – SE-ETK Ápolástudományi Tanszék); Izületvédelem szakdolgozóknak- Hogy ne mi legyünk a páciensek? - Sunyál Anna (SZTE SZAKK Ortopédiai Klinika Központi Fizioterápiás Oktatási Csoport); Koraszülöttek szüleinek véleménye a hazaadással kapcsolatos információkról és lelki támogatásról - Adamik Ágnes (SZTE SZAKK Gyermekgyógyászati Klinika és Gyermek Egészségügyi Központ); A dietetikus munkája a diabéteszes gyerekek táboroztatása során - Zsilák Katalin (SZTE SZAKK Ápolásvezetési és Szakdolgozói Oktatási Igazgatás Dietetikai Szolgálat); Érzelmi, lelki valamint egzisztenciális tényezők és a stroke kialakulása közötti kapcsolat vizsgálata - Dr. Molnárné Kertész Mária (SZTE SZAKK Ápolásvezetési és Szakdolgozói Oktatási Igazgatás Szociális Munkás Szolgálat); Ambuláns művészetterápiás csoport tapasztalatai képekben - Higyisánné Magyar Anikó (SZTE SZAKK Pszichiátriai Klinika); Hangulatfokozók ünnepi köntösben Halmainé Kiss Ilona, SZTE SZAKK Laboratóriumi Medicina Intézet; Minden perc és kéz számít - Buresch Györgyi (SZTE SZAKK Sürgősségi betegellátó Önálló Osztály).
  • november 25.
    09:00 - 12:30
    A SzeReTeD és partnerintézményei által szervezett program legfőbb célja, hogy a gyermekek és szüleik minél sokszínűbb formában átélhessék a kísérletezés és a felfedezés élményét. A rendezvényen diákok vezetésével kísérletezhetnek a résztvevők. Ezen a délelőttön az érdeklődők bepillanthatnak a diáklabor életébe, ezzel hozzájárulva a természettudományok kísérleti tapasztalatszerzésen alapuló népszerűsítéséhez.
  • november 25.
    15:00 - 20:00
    A Borok tudósai - tudósok borai című programsorozatot - az SZTE és az MTA SZAB védnökségével - hetedik alkalommal rendezi meg a Válogatás borszaküzlet, 22 borászat részvételével. A belépő díjas borkóstolós programra a szervezőnél lehet jelentkezni.